Requirement1
Computing power
Solution 1: GPU4
- High Budget GPU: Titan XP, Amazon, Price: $1,649.99
- Medium Budget GPU: GeForce GTX 1080 Ti 8G, Amazon
8GB有点小,但对很多任务都足够了,比如足够应付Kaggle比赛里大多数图像数据集合自然语言理解(NLP)的任务。7
- Medium Budget GPU: GeForce GTX 1060 6G, Amazon, Price: about $318.04
- Small Budget GPU: GeForce GTX 1050 TI, Amazon, Price: $157.99
Solution 2: Cloud45
Using a cloud service is a good choice for getting started. But note that building a local deep learning rig does become cost effective if you need to train models for 1500+ hours. See Andrej Karpathy’s setup if you want to give it a try.5
Comparison: AWS vs. Google Cloud
- AWS: 2 CPU, 8GB RAM, $69/Month, Pay per hour
- Google Cloud: 2 CPU, 8GB RAM, $52/Month, Pay per minute
写在最后
购买前最好在pcpartpicker.com上列好清单,网站可以自动检查兼容性。8
初期,我打算先在AWS上测试模型9,计算一下时间复杂度,如果有必要再考虑是否自己搭建一台Local DL Machine吧。
1. 如何配置一台适用于深度学习的工作站? ↩
2. 学习tensorflow,买什么笔记本好? ↩
3. 15寸macbook pro如何使用CUDA对深度学习进行gpu加速? ↩
4. YouTube|How to Train Your Models in the Cloud by Siraj Raval ↩
5. What is best cloud solution for deep learning? ↩
6. Local DL rig of Andrej Karpathy’s setup:List ↩
7. 哪些GPU更适合深度学习和数据库? ↩
8. 成本14,000元,如何自己动手搭建深度学习服务器? ↩
9. 在AWS上配置深度学习主机 ↩